
Some Direct Decompositions of the Set of 
Integers 

By N. G. de Bruijn 

1. Introduction. Every positive integer can be uniquely represented in the form 

X -- E0 + 261 + 2 22 + 2 E(3 + .. 

with ei = 0 or 1, Ei = 0 from a certain point onwards, and the sequence 1, 2, 22, 
is essentially the only one with this property. The situation is entirely different, 
however, if we require that all integers, positive, negative or zero, be represented. 
Some of the simplest possibilities are obtained by replacing 1, 2, 22, 23, *- by 1, 
-2, 2, -2, 2, -2,. .. or by 1, 2, -22, 23, 24, -25, 26, 27, -28, , but there 
are very many others. Such decompositions were studied in [1]. In particular, cases 
were investigated where the sequence has the form M, -2N, 22111, -23N, 243/l, 
- 2N, . . . . It is to this type of decomposition of the set of integers that the present 
paper is devoted entirely. 

It is natural to split the resulting representation of x according to terms with 
M and terms with N, so x = Ms, - 2Ns2 , and now we can reformulate the problem 
in terms of the set S of all possible values that si and s2 can assume. 

The set S is defined as the set of all nonnegative integers with the property 
that, when represented in the scale of 4, they do not contain 2's or 3's, but only 
O's and l's. So 

S = {0, 1, 4, , 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85, 

256, 257, 260, 261, 272, 273, 276, 277, 320, 321, ... 

Let X denote the set of all integers, positive or negative or zero. The decomposi- 
tions of X we shall be concerned with are of the type illustrated by the following 
examnples: every x E X can be represented in exactly one way as 

x = si -2s2 (s S,, S E), 

and in exactly one way as 

x = 7s1-2s2 (s1 E S, s2S). 

We shall say that a pair (M, N) of nonnegative integers is a good pair if it is 
true that every x E X can be represented uniquely as 

x = Ms,-2Ns2 (s1 E S, s2 E S). 

Saying that (Ml, N) is good is equivalent to saying that the formal relation 
00 

F(zM ) F(zi-2N) E zk 
k=-oo 

holds, where 
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F(Z) = (1 + z) (1 + Z4) (1 + Z16) (1 + Z64) 

These good pairs were discussed in [1, Section 4] (there they were called "basic" 
pairs), as a special case in a more general setting. The following statements were 
proved there: 

(1) If (M, N) is good, then (N, M) is good. 
(2) If either M or N is divisible by any number of the form 2' + 1 (m - 

0, 1, 2, ), then (M, N) is not good. 
(3) For each k (k = 0, 1, 2, ), the pair (1, 22k+1- 1) is good. 
(4) If (M, N) is good, then M N (mod 6). 
(5) If (M, N) is good, then M and N have no common divisor. 
(6) If (M, N) is good, and t = N/M, then t does not belong to any of the fol- 

lowing intervals: 

1_ < t < 2, 3 < t < 6, 11 < t < 24, 43 < t < 96, 

If we use the fact that either M = 1 or M > 7 (see (2)), the argument can be 
refined a little, arid leads to the conclusion that t does not belong to any of the 
intervals 22k+1/3 < t < 3*22k-1 (k = 0, ?1, 2, ... 

There exists a procedure by which, for each pair (M, N), we can decide in a 
finite number of steps whether it is good or not. It is a special case of a procedure 
for a slightly more general situation (see [1]), and can be described as follows. We 
construct an oriented graph whose vertices are the integers. If x E X, x1 E X, we 
take an oriented edge from x to xi if and only if one of the following relations holds: 

x-=4xi, x=4x1 + M, x = 4x1-2N, x = 4x1 + M-2N. 

Assuming that both M and N are odd (which is obviously necessary for the pair 
to be good), we notice that to each x there belongs exactly one xi. 

Removing the loop from 0 to 0, we have 
(7) The pair (M, N) is good if and only if the graph is a tree (whose root is 0, 

of course). 
We need to investigate only the part of the graph lying in the interval 

(A) -M/3 < x < 2N/3, 

for if x > 2N/3 we have -M/3 < xi < x, and if x < -M/3 we have x < xi < 
2N/3. So if the part inside (A) is a tree, the whole graph is a tree. We denote the 
part inside (A) by r. 

In [1] we listed all good pairs as far as 1 _ M ? N < 100, obtained with the 
aid of pencil and paper. (This included making a table of the relation between x 
and xl, constructed with four strips of paper that simply had to be shifted in order 
to switch on the next pair.) The material has now been extended considerably 
with the assistance of an IBM 1620 computer. The author is indebted to Mrs. E. 
Simarro who did a large part of the actual programming. 

2. Computations and Observations. A pair (M, N) was investigated as follows. 
We consider the componelnt ri of r that contains 0. This Fi is always a tree, and 
the question is whether Fi = r. In other words, the question is whether the number 
of vertices of ri is equal to the total number of integers in the interval - M/3 < 
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x < 2N/3. The number of vertices of Fi was obtained by tracing ri in such a way 
that each edge is taken just once in one direction, and just once in the other direc- 
tion. At each point investigated during the tracing, we kept a record of the direct 
path leading from that point to 0. 

In Table 1 we list all good pairs as far as M and N are at most 1800. According 
to (1) we restricted ourselves to M < N, and the pairs are arranged with increas- 
ing N. If either N or M was divisible by 2, 3 or 5 (see (2)), or if N - M was not a 
multiple of 6 (see (4)), the pair was not investigated any further. Also, the pair 
was dropped if N/24 < M < 3N/32, or N/6 < M < 3N/8 or 2N/3 ? M < N 
(see (6)). 

Table 1 shows many pairs with M = 1 (by (3) we know there are infinitely 
many of them). In a separate investigation we determined all N < 24889 such that 
(1, N) is good. These are shown in Table 2. The gaps predicted by (6) are clearly 
visible: between 7 and 31, between 37 and 109, between 679 and 1579, between 
2677 and 6493, and between 10879 and 24649. For all N ? 24889 (restricted to 
N 1 (mod 6), N / 0 (mod 5)) we determined the number of vertices of the 
subtree ri, but these numbers are not listed in this paper. Inside the gaps as in- 
dicated by (7), this number of vertices is constant, and in fact, the tree undergoes 
deformations only if N runs through such intervals, and the topological structure is 
unaltered. ri has 2 vertices if N = 13 or 19, 4 vertices if 43 < N < 91 8 vertices 
if 181 < N ? 379, 16 vertices if 691 ? N < 1531 32 vertices if 2731 < N < 6139, 
64 vertices if 10927 ? N ? 24571. This is easily proved; we do not need a computer 
for this. 

There are also other gaps in the list, again corresponding to trees with constant 
shape, but slightly more complicated than in the cases just mentioned. For example, 
there are 40 vertices if 1777 < N < 1879, 48 vertices if 2221 < N ? 2359, 80 
vertices if 7111 < N ? 7559, 96 vertices if 8881 ? N < 9451. 

Another look at Table 1 shows that there are many good pairs where N = 
2M + 1 or N = 2M - 1. These were investigated separately up to M = 8171, 
and listed in Table 3. Also here, we notice a number of gaps, which can easily be 
discussed theoretically: if 4k < M < 6-4k-1, N = 2M ?t 1, then the subtree r1 
has exactly 2k vertices. 

Some good pairs look particularly pretty. For example: 

(7, 13), (7, 132); (72 112), (1, 112), (1, 232); (1, 7), (1,72), (1, 7 4) 

A more careful inspection of the available material led to the discovery of some in- 
finite sequences of good pairs. The pairs 

(11, 23), (11, 89), (11, 353), (11, 1409), 

all of the form (11, 22. 4k + 1), can be found in Table 1, and the computer proved 
that the next three items, viz. (11, 5633), (11, 22529), (11, 90113) are also good. 
A general proof is presented below (Theorem 1). 

Another remarkable sequence can be conjectured from Table 2, viz. 
(1, 10.4k - 3), of which Table 2 shows the first six cases, viz. 

(1, 7), (1, 37), (1, 157), (1, 637), (1, 2557), (1, 10237). 

See Theorem 2 for a general proof. 



TABLE 1 

Good pairs with 1 < M < N < 1800 

N M N M N M N il N 

1 1 7 277 311 539 373 781 521 1043 
1 7 139 277 293 563 511 781 683 1043 
7 13 47 287 373 571 397 787 131 1049 

11 23 143 287 91 583 397 793 667 1051 
1 31 151 301 343 583 311 803 31 1057 

13 31 31 307 23 587 491 809 131 1061 
19 31 161 317 59 587 511 817 7 1063 

1 37 211 319 367 589 499 823 133 1063 
7 43 163 331 293 593 349 829 131 1067 

31 49 13 337 23 599 7 841 103 1069 
31 61 127 337 347 599 7 853 11 1073 
31 67 43 343 371 599 83 857 113 1073 
47 71 199 343 19 601 367 859 29 1079 

7 73 211 343 61 607 547 877 539 1079 
31 73 11 347 317 611 413 881 157 1081 
41 77 173 347 287 617 7 883 679 1087 
47 77 11 353 19 619 383 887 167 1091 
41 83 179 359 401 623 437 887 109 1093 
11 89 157 367 1 631 467 887 529 1093 
49 97 229 367 1 637 139 889 547 1093 
41 101 181 379 61 637 541 889 137 1097 
49 103 61 397 419 641 419 893 667 1099 

1 109 157 397 61 643 7 907 443 1103 
1 121 53 401 299 647 109 919 107 1109 

49 121 203 401 1 661 389 923 137 1109 
79 121 1 403 97 661 31 931 139 1111 

1 127 203 407 311 671 541 931 43 1117 
79 127 193 409 413 671 7 937 7 1123 

1 133 217 409 419 671 91 937 589 1123 
89 143 11 419 349 673 7 943 691 1123 

1 151 1 421 421 673 97 943 167 1127 
79 151 199 427 293 677 553 943 701 1127 

1 157 211 427 1 679 491 947 457 1129 
103 157 217 433 107 683 31 949 719 1133 
89 167 181 451 23 701 511 961 37 1141 

7 169 229 451 371 701 367 967 133 1147 
1 193 67 457 83 713 457 967 151 1153 

91 193 287 461 89 719 491 971 463 1153 
121 193 47 467 107 719 517 973 571 1159 
31 199 19 469 73 727 31 979 37 1171 

121 199 73 469 97 733 373 979 463 1171 
89 209 251 473 307 733 491 983 469 1171 

101 209 59 479 451 733 157 997 589 1177 
131 209 193 487 121 739 167 1007 733 1177 

7 211 263 497 23 749 499 1009 149 1187 
103 217 199 499 403 757 161 1019 587 1187 
109 217 1 511 19 763 401 1019 161 1199 

7 223 61 511 127 763 37 1021 599 1199 
31 229 67 511 463 763 511 1021 751 1201 

137 233 247 511 77 767 511 1027 611 1211 
127 253 209 521 451 769 137 1031 713 1211 
163 253 1 529 503 773 43 1033 499 1213 
29 269 83 539 337 781 667 1033 647 1217 
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TABLE 1-Continued 

31I N M N 11 N i N M N 

49 1219 211 1369 149 1493 997 1603 733 1693 
571 1219 43 1381 719 1499 803 1607 647 1697 
589 1219 683 1391 749 1499 199 1609 1109 1697 
149 1247 139 1393 59 1511 767 1613 727 1699 
479 1247 11 1409 203 1523 1 1621 53 1703 
479 1253 707 1409 983 1529 193 1621 173 1703 

13 1267 217 1417 721 1537 763 1621 1061 1703 
149 1271 47 1421 907 1537 869 1631 11 1709 
161 1283 749 1427 893 1541 1 1633 851 1709 
31 1291 547 1429 181 1543 203 1637 1061 1721 
41 1307 47 1433 917 1559 857 1637 11 1733 

623 1307 167 1433 181 1561 667 1639 271 1741 
167 1319 851 1433 817 1561 809 1643 283 1753 
647 1319 581 1451 193 1567 661 1651 11 1757 
821 1319 737 1451 197 1571 791 1661 167 1757 
823 1321 583 1453 971 1571 13 1663 911 1757 
133 1327 197 1457 743 1577 13 1669 73 1759 
691 1333 173 1463 791 1577 259 1669 211 1771 
137 1349 587 1463 1 1579 251 1679 937 1771 
199 1351 589 1471 803 1583 677 1679 1123 1771 
517 1351 199 1477 631 1591 223 1687 1091 1787 
43 1357 11 1481 991 1597 53 1691 13 1789 

683 1367 737 1481 817 1603 899 1691 899 1793 
163 1369 

TABLE 2 
Values of N (with 1 < N ? 24889) such that (1, N) is a good pair 

1 151 661 2041 2173 6661 7591 8089 8311 9487 9991 10669 
7 157 679 2047 2401 6703 7717 8101 8317 9493 10087 10741 

31 403 1579 2053 2527 6733 7729 8173 8497 9601 10111 10837 
37 421 1621 2071 2557 6871 7747 8191 8569 9631 10159 10879 

109 511 1633 2077 2677 6967 7753 8197 8623 9757 10237 24649 
121 529 1969 2143 6493 6973 7819 8221 8701 9937 10261 24751 
127 631 1981 2149 6559 6979 7861 8257 9457 9961 10663 24781 
133 637 2017 2167 6643 7009 

TABLE 3 
Good pairs (M, N) with N = 2M ?_ 1; 1 < 31 ? 8171 

11 N 1 M N M N M N M N 

1 1 143 287 521 1043 989 1979 2723 5447 
7 13 151 301 539 1079 2041 4081 2761 5521 

11 23 173 347 547 1093 2047 4093 2999 5999 
31 61 179 359 589 1177 2107 4213 3661 7321 
41 83 203 407 599 1199 2153 4307 3721 7441 
49 97 217 433 683 1367 2191 4381 3739 7477 

109 217 397 793 749 1499 2219 4439 6199 12397 
127 253 491 983 803 1607 2531 5063 6923 13847 
139 277 511 1021 929 1859 2693 5387 7949 15899 
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In Table 3 we can discover the sequence 

(1, 1), (7, 13), (31, 61), (127, 253), (511, 1021), (2047, 4093), 

i.e., the first six items of the sequence (22k 1 _ 1 22k - 3). See Theorem 3 for a 
general proof. 

The case (11, 90113) was the "largest" one presented to the computer during 
this investigation. In that case we have a very large tree, filling the whole interval 
[-30037, +7] (see (A)), and it took the computer 14 minutes to make sure that 
the tree has 30045 nodes indeed. The "height" of this tree is comparatively small: 
its highest point -21838 has level 32, i.e., iteration of the mapping x -- xi, starting 
with x - 21838, producesO in 32 steps: - 21838 -> - 5454 - - 1358 -+ - 334 -+ 
- 78 - - 14 -- +2 - +6 -> +7 -+ -22521 - - 28153 -+ -29561 -+ -29913 -+ 
- 30001 -v -30023 -* -30034-- - 7503 -> -24404 -+ -6101 -+ -24048 -+ 
- 6012 - -1503 -+ -22904 -> - 5726 -+ -1426 -+ -351 - - 22616 - - 5654 -+ 
- 1408 -+-352 -+-88 --- - 22 --- 0. 

3. Three Theorems. As a preparation for Theorems 1, 2, 3, we first prove two 
lemmas. 

LEMMA 1. If a pair (M, N) is not a good pair then there exists a positive integer 
n, and there exist numbers El, * , en e 6 an , all either 0 or 1, but not all 0, 
such that 

n 

Z (MEd - 2N6i)4-1' 0 (mod 4n - 1). 
Z =1 

Proof (cf. [1], Theorem 7). It follows from (7) that if P is not a tree, then the 
interval (A) has to contain a closed cycle of P, viZ. x = XO -> Xi -l X2 - . 

Xn= xo and xi = 4xi+i + MEt - 2Nbi, with suitable values of ej and bi. It follows 
that 

n 

Z (MEd - 2N5i)4'-1 (4n - 1)xo. 

Since the loop 0 - 0 was removed from our graph, we have xo # 0; this excludes 
El - * * = En = 61 = . . = an = 0. 

LEMMA 2, Let n, k, El, ... * en be integers (n > 1). If p is an integer, we define 
{ p} as the number defined by {p} -p (mod n), 0 < { p} < n. Then we have 

n n 

4 Ei 4i ii-k} 4-1 (mod 4f - 1) 
ki1 i 1 

Proof. We have 4k+i1 4{k+i}-1 moreover 
n n+k n 

{ k+i}-l = Z { -k} 4{ } = Z E 1ik4 
i-1l i=k+l 

LEMMA 3. Let n, Al, ** ,An be integers, and assume that 
n 

Z j 4i1= 0 (mod 4 n - 1). 

Then there exist integers to , t1 , t* , = to such that 



SOME DIRECT DECOMPOSITIONS OF THE SET OF INTEGERS 543 

tj+i = 4tj - A_jj (j = O,0 -* n-) 

Pr-oof. For each j we put 
n 

wj 5= E fi_j) i1 
W =1 

and we easily obtain wj+l = 4wj - (4 - 1) _ . Furthermore we have 

wj ? (maxi A-)(1 + 4 + * * + 4n-1) = l(maxi r )(4fn - 1), 

and a similar lower estimate. So taking tj = wj/(4j - 1), we have proved our 
lemma. 

THEOREM 1. If k = 0, 1, 2, *.* ,the pair (22-4 + 1, 11) is good. 
Pr-oof. Assume that this is false for some k. Apply Lemma 1, with M = 22* 4k + 1, 

N = 11; this produces El, *, Ie 61 ,n I all O or 1, and not all 0. We split 
M into the two parts 1 and 22. 4k; to the second part we apply Lemma 2. Thus we 
obtain 

n 

E (+ 22(E{iko} - 5i))4i- 0 (mod4T- 1). 

To this sum we apply Lemma 3, with Ai = ei + 22 (E{iu}-k - ). That produces 
the cycle to, t1, ***, tn = to. We have i E Z = {0, 22, -22, 1, 23, -21}, so 
by Lemma 3 the t's are restricted by -7 ? tj ? 7, tj+1 - 4tj E Z. We can now 
make a list of all possibilities for the vector (tj I tj+l I P{_j)). They are 

(-7, -, -21), (-7, -6, -22), (-6, -3, -21), (-6, -2, -22), 

(-5, 1, -21), (-5, 2, -22), (-4, 5, -21), (-4, 6, -22), (-1, -5,1 ), 

(-1, -4, 0), (0, -1, I1), (0, 0, 0), (1, 3, 1), (1, 4, 0), (2, 7, 1), (4, -7,23), 

(4, -6, 22), (5, -3, 23), (5, -2, 22), (6, 1, 23), (6, 2, 22), (7, 5, 23), 

(7, 6, 22). 

The possible transitions from a tj to the next one, tj+l, can be visualized by drawing 
a graph with the nodes -7, * *, +7, whose oriented edges represent the transitions 
tj- tj+l that can be obtained from the above vectors: (-7, -7), (-7, -6), 
(-6, -3), (-6, -2), (-5, 1), (-5, 2), (-41 -5), (-41 -6), (-II -5), 
(-1, -4), (O, -1), (O, O), (1, 3), (1, 4), (2, 7), (4, -7), (4, -6), (5, -3), 
(5, -2), (6, 1), (6, 2), (7, 5), (7, 6). The cycle to -+ t1 -- ... tn = to repre- 
sents some closed circuit in this oriented graph. It is easy to see that there can be 
only the following three closed circuits: (a) -* 0* 0 -0 O .O*, (b) * -* - 
- 7 --{ -7 -- - 7-+- , (c) * * * - 2 -->7 6 2 7 6 ;in case (c) 
it is obvious that n is a multiple of 3. 

In case (a) we have tj = tj+l = 0 for all j, whence 0i = 0 for all i. By Pi = 'i + 
22(Ei-k)- 8i) we deduce that el = =.= . = = = 0. This contra- 
dicts our assumption, so case (a) is impossible. 

In case (b) we have tj = tj+1 = -7 for all j, whence Pj = -21 for all j, so 
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E, = 1, E(i-k = 0 i I 1 for all i. This is impossible, for if ej = for all i then 
E{i-k} = 1 for all i. This excludes case (b). 

We finally consider case (c). The transitions 2 -* 7, 7 -* 6, 6 2 correspond to 
the vectors (2, 7, 1), (7, 6, 22), (6, 2, 22), respectively. If Di = 1 we have Ei = 1, 
E i-k -bi = 0, if Pj = 22 we have Ei = 0, Efi-k -i = 1. Therefore, the average 
value of Ei is -, and the average of E{ik} - 3i is 2. It follows that the average 
of ai is - 3,which is impossible. This excludes (c), which was the one last possibil- 
ity, and our proof is complete. 

THEOREM 2. If k = 0, 1, 2, ,the pair (10 .4k -3, 1) is good. 
Proof. The proof is similar to the one of Theorem 1. Assume that, for somle k, 

(10 .4k - 3, 1) is not good. Apply Lemma 1, with M = 10 . 4k - 3, N = 1; this 
again produces El, **, I, 1, a n, all 0 or 1, and not all 0. We obtain, using 
Lemma 2, 

n 

Z (-3Ei + 1O{&i-k} - 2j)4i 1 0 (mod 4f - 1). 

We apply Lemma 3 with Dj -3Ej + 10E{i-k}-23i . As in the proof of Theorem 
1, we obtain Z = {0, 10, 8, -2, -3, 7, 5, -5}; the restriction on the elements of 
the cycle to -> t1 * -* > tn = to is - 1 < tj < 3, and the possible vectors 

(tjI tj+l , P_j) are 

(-1, -1, -3), (-1,1 , -5), (0,0 ,0 ), (0, 2, -2), (0, 3, -3), (1,-1, 5), 

(2, 0, 8), (2, 1, 7), (2, 3, 5), (3, 2, 10). 

Drawing the transition graph with nodes -1, 0, 1, 2, 3 and oriented edges (-1, - ), 
(-,1 ), (0, 0), (0, 2), (0, 3), (1, -1), (2, 0), (2, 1), (2, 3), (3, 2), we notice 
that the t-cycle has to lie either in the subgraph determined by the nodes 0, 2, 3 or 
in the subgraph determined by 1, -1, because there is no way leading from the 
second group to the first one. 

First we assume that our cycle lies in the first group. For the transitions inside 
this group we evaluate mi = E{i-kk} - j. Each value of Pi E Z uniquely determines 

,i I EIi-k} and i, and we obtain that rT = 0, 1, 1,0, -1, 0,0, -1 if Pi = 0, 10, 8, 
-2, -3, 7, 5, -5, respectively. It follows that the transitions 0 -> 0, 0 -O 2, 2 -O 0, 
0 -O 3, 2 -* 3, 3 -* 2 correspond to r7 = 0, 0,1, -1, 0, 1, respectively. The average 
of all ri has to be 0 (since et and E{i-k} have the same average). It is obvious from 
the graph that if our cycle contains any transition other than 0 -O 0, then it has to 
contain 2 -> 0, where -ri = 1. This spoils the average: the value -1 on 0 -O 3 
cannot compensate for this, for 0 -O 3 is necessarily followed by 3 -* 2, and the 
joint contribution of 0 -O 3 and 3 -* 2 to the sum of the T's is 0. Thus there only re- 
mains the cycle -*0 -0 -* O OO> 0 - - . But this cycle leads to 'E = = = 

U = * * * a= = 0, which was excluded. 
We next assume that our cycle lies in the second group, where we have the 

transitions -1 -I, -1, -1 - 1, 1 -I -1. These correspond to the values ri = 
-1, - 1, 0, respectively. So it follows that in any cycle all rs are <0, some are 
<0, and the average cannot be 0. This completes the proof. 

THEOREM 3. If k = 1, 2, 3, * * *, the pair (22k - 3, 22k - 1) is good. 
Proof. We follow the same pattern as in the proofs of the previous theorems. 
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The graph is much simpler in this case, but the reasoning has to be more delicate 
since the averaging argument fails. 

Assuming that for some k the pair is not good, we obtain, using Lemmas 1 and 2 
n 

E (-36i + 3{i-k) + 2Ei - 0fi-k} )4 - O (mod 4' - 1). 
i=l 

We put 

,Ei - 3i = oJi , t 3oJi - (J{i_k} - 
'i, 

and we apply Lemma 3, producing a cycle to, ti, ... , tn = to. We have 4tj - 

tj+1 = P[-j) E Z, and Z = {-4, -3, -2 -1, 0, 1, 2, 3}, whence -1 < tj < 1. 
The possible vectors (tj, tj+1 , _jj) are 

(1, I1, 3), (0, 1, -1), (0, O,0 ), (0, -,1 ), (-1,0 , -4), (-1, -1, -3). 

The only vector whose first entry equals 1 is (1, 1, 3). So if tj = 1 for one j, 
then tj = 1 for all j, and P[-j) = 3 for all j. It follows that o-i = 1 for all i, so U{i-k} = 

1 for all i, whence Ei = 3 - 1 - 3 = -1 for all i. This is impossible. Henceforth 
we shall assume that tj 5 1 for all j. 

First we take the case that all ti = 0 for all j, so Pi = 0 for all i. Hence 3o-i = 

O({i-k} + Ej for all i; since o-j E { -1, 0, 1} , ej {0, 1} for all j, we deduce that o-i = 
41 is impossible. So o-i = 0 for all i, therefore (J{i-k} = 0 for all i, hence Ej = 0 for 

all i. Therefore 3i = Ei + o-i = 0 for all i, and we have reached E = = En = 

bi = . = Sn = 0, which was excluded beforehand. 
Next we take the case that tj = -1 for all j, so Pi = -3 for all i. From the 

definition of Dj it follows that a-i = -1 for all i. Therefore, a-{i-k} = - 1 for all i, 
and we arrive at -3 = -3 + 1 -i , so Ei = 1 for all i. Finally, bi = E- -i = 2, 
but this is impossible since &i can be only 0 or 1. 

It remains to investigate the case that some tj are 0 and some are -1. Then 
there is a number m with tm = 1, tm+l = 0. Hence Pf-m} = -4, and it follows 
that --m} = -1, hence E{-m} = 0, 3{-mI = 1, hence a-f-m-k} = --m) + 3o{-m} - 
,E-mf = 1. Thus we proved the existence of an index j with o-j = 1. 

From the fact that the ti's only take the values 0 and -1 we deduce: 

(B) If o(} = 1 then tj = 0, tj+l = - 1, -1j--k) = 1. 

For, r_j) = 1 excludes the values _jj = -1, 0, -4, -3, and this leaves for 
(tj l tj+l, I _j}) only the possibility (0, - 1, 1). So _jj = 1; combined with v{_j) = 1 
this leads to a-f-j-k} + E{j} - 2, whence a-f-j-k} = 1 E{-j} = 1. 

We also need: 

(C) If t1 = -1, t1+1 0 then (l- k}1-k = 1 

For, P{-jz = 4t, - tj+l = -4, whence o-f-1 =-1=, a{-i-kl + Ef - } 1. As i = 

a-I + bi, we have Ei-1) < a-j-1 + 1 = 0, whence q-1f = 0, a-f-l-k) = 

We now finish the proof of the theorem. We know that at least once O{mf = -1 
and that at least once tj = 0. 

Let h be the smallest positive number such that n exists with 

{_ml = 1, tm+h = 0. 
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By (B) we have t+1 = -1, whence h > 1. Therefore tm?+h1 = -1, because of 
the minimality of h. 

From (B) we infer O{-mk} = 1, and if we again apply (B), now with j = m + k, 
we obtain tm+k = 0, tm+k+l = -1. 

Applying (C) with 1 = m + h - 1 we deduce J-m-h-k+l} = 1. Next, applying 
(B) with j = m + h + k- 1, we find tm+h+k1 = 0, tm+h+k = 1. Thus we have 
obtained 

(J{-m-k} = 1, tm+k+h-1 = 0 h - 1 > 0, 

and this contradicts the minimality property of h. The proof is now complete. 
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